Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis.

نویسندگان

  • I C Boels
  • A Ramos
  • M Kleerebezem
  • W M de Vos
چکیده

We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was found by Northern blot analysis to be transcribed in a monocistronic RNA. The L. lactis galU gene could complement an Escherichia coli galU mutant, and overexpression of this gene in L. lactis under control of the inducible nisA promoter resulted in a 20-fold increase in GalU activity. Remarkably, this resulted in approximately eightfold increases in the levels of both UDP-glucose and UDP-galactose. This indicated that the endogenous GalE activity is not limiting and that the GalU activity level in wild-type cells controls the biosynthesis of intracellular UDP-glucose and UDP-galactose. The increased GalU activity did not significantly increase NIZO B40 EPS production. Disruption of the galE gene resulted in poor growth, undetectable intracellular levels of UDP-galactose, and elimination of EPS production in strain NIZO B40 when cells were grown in media with glucose as the sole carbon source. Addition of galactose restored wild-type growth in the galE disruption mutant, while the level of EPS production was approximately one-half the wild-type level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis.

We describe the effects of modulating the activities of glucokinase, phosphofructokinase, and phosphoglucomutase on the branching point between sugar degradation and the biosynthesis of sugar nucleotides involved in the production of exopolysaccharide biosynthesis by Lactococcus lactis. This was realized by using a described isogenic L. lactis mutant with reduced enzyme activities or by control...

متن کامل

Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris By the sugar source.

Lactococcus lactis produced more exopolysaccharide (EPS) on glucose than on fructose as the sugar substrate, although the transcription level of the eps gene cluster was independent of the sugar source. A major difference between cells grown on the two substrates was the capacity to produce sugar nucleotides, the EPS precursors. However, the activities of the enzymes required for the synthesis ...

متن کامل

Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461.

The exopolysaccharide (EPS) capsule-forming strain SMQ-461 of Lactococcus lactis subsp. cremoris, isolated from raw milk, produces EPS with an apparent molecular mass of >1.6 x 10(6) Da. The EPS biosynthetic genes are located on the chromosome in a 13.2-kb region consisting of 15 open reading frames. This region is flanked by three IS1077-related tnp genes (L. lactis) at the 5' end and orfY, al...

متن کامل

Functional analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci: complementation, expression, and diversity.

Sixteen exopolysaccharide (EPS)-producing Lactococcus lactis strains were analyzed for the chemical compositions of their EPSs and the locations, sequences, and organization of the eps genes involved in EPS biosynthesis. This allowed the grouping of these strains into three major groups, representatives of which were studied in detail. Previously, we have characterized the eps gene cluster of s...

متن کامل

Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP-rhamnose Biosynthesis.

dTDP-rhamnose is an important precursor of cell wall polysaccharides and rhamnose-containing exopolysaccharides (EPS) in Lactococcus lactis. We cloned the rfbACBD operon from L. lactis MG1363, which comprises four genes involved in dTDP-rhamnose biosynthesis. When expressed in Escherichia coli, the lactococcal rfbACBD genes could sustain heterologous production of the Shigella flexneri O antige...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 67 7  شماره 

صفحات  -

تاریخ انتشار 2001